Helical tensegrity as a structural mechanism in human anatomy

Published:January 24, 2011DOI:


      Tensegrity is a structural system popularly recognised for its distinct compression elements that appear to float within a tensioned network. It is an attractive proposition in living organisms because such structures maintain their energy-efficient configuration even during changes in shape. Previous research has detailed the cellular cytoskeleton in terms of tensegrity, being a semi-autonomous system amenable to such analysis because of its size. It has also been described at higher levels in the extra-cellular/fascial matrix and musculo-skeletal system, but there are fewer syntheses of this.
      At a fundamental level, the helix and tensegrity share common origins in the geometries of the platonic solids, with inherent hierarchical potential that is typical of biological structures. The helix provides an energy-efficient solution to close-packing in molecular biology, a common motif in protein construction, and a readily observable pattern at many size levels throughout the body. The helix and tensegrity are described in a variety of anatomical structures, suggesting their importance to structural biology and manual therapy.


      To read this article in full you will need to make a payment


      1. Levin SM. The icosahedron as the three-dimensional finite element in biomechanical support. Proceedings of the Society of General System Research Symposium on Mental Images, Values and Reality 1986;Philadelphia. pp. G14–G26.

        • Denton M.J.
        • Dearden P.K.
        • Sowerby S.J.
        Physical law not natural selection as the major determinant of biological complexity in the subcellular realm: new support for the pre-Darwinian conception of evolution by natural law.
        BioSys. 2003; 71: 297-303
        • Pauling L.
        The architecture of molecules.
        Proc Nat Acad Sci. 1964; 51: 977-984
        • Scarr G.M.
        Simple geometry in complex organisms.
        J Bodyw Mov Ther. 2010; 14: 424-444
        • Ingber D.E.
        Tensegrity-based mechanosensing from macro to micro.
        Prog Biophys Mol Biol. 2008; 9 ([Review]): 163-179
        • Skelton R.E.
        • Adhikari R.
        • Pinaud J.P.
        • Chan W.
        • Helton J.W.
        An introduction to the mechanics of tensegrity structures.
        Proc 40th IEEE Conf Decis Contr. 2001; 5: 4254-4259
        • Masic M.
        • Skelton R.E.
        • Gill P.E.
        Optimization of tensegrity structures.
        Inter J Solids Struct. 2006; 43: 4687-4703
        • Standring S.
        Grays anatomy. 39th ed. Elsevier Churchill Livingstone, 2005
        • Gordon J.E.
        Structures, or why things don’t fall down.
        Penguin, 1978
        • Walker P.M.B.
        Chambers science and technology dictionary.
        Chambers, Edinburgh1988
        • Chouaib N.
        • Goriely A.
        • Maddocks J.H.
        Helices Proc Nat Acad Sci. 2006; 103: 9398-9403
        • Denton M.J.
        • Marshall C.J.
        • Legge M.
        The protein folds as platonic forms: new support for the pre-Darwinian conception of evolution by natural law.
        J Theor Biol. 2002; 219: 325-342
        • Parry D.A.D.
        • Fraser R.D.
        • Squire J.M.
        Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure.
        J Struct Biol. 2008; 163: 258-269
        • Orgel J.P.R.O.
        • Irving T.C.
        • Miller A.
        • Wess T.J.
        Microfibrillar structure of type I collagen in situ.
        Proc Nat Acad Sci. 2006; 103: 9001-9005
        • Hulmes D.J.S.
        • Wess T.J.
        • Prockop D.J.
        • Fratzl P.
        Radial packing, order, and disorder in collagen fibrils.
        Biophys J. 1995; 68: 1661-1670
        • Lakes R.
        Materials with structural hierarchy.
        Nature. 1993; 361: 511-515
        • Jelinek H.F.
        • Jones C.L.
        • Warfel M.D.
        • Lucas C.
        • Depardieu C.
        • Aurel G.
        Understanding fractal analysis? The case of fractal linguistics.
        Complexus. 2006; 3: 66-73
        • Gao H.
        • Ji B.
        • Jager I.L.
        • Arzt E.
        • Fratz P.
        Materials become insensitive to flaws at nanoscale: lessons from nature.
        Proc Nat Acad Sci. 2003; 100: 5597-5600
        • Gupta H.S.
        • Seto J.
        • Wagermaier W.
        • Zaslansky P.
        • Boesecke P.
        • Fratzl P.
        Cooperative deformation of mineral and collagen in bone at the nanoscale.
        Proc Nat Acad Sci. 2006; 103: 17741-17746
        • Puxkandl R.
        • Zizak I.
        • Paris O.
        • Keckes J.
        • Tesch W.
        • Bernstorff S.
        • et al.
        Viscoelastic properties of collagen: synchrotron radiation investigations and structural model.
        Phil Trans R Soc Lond B. 2002; 357: 191-197
        • Salvadori M.
        Why buildings stand up: the strength of architecture.
        WW Norton, 1980 (p83)
        • Crick F.H.C.
        • Watson J.D.
        Structure of small viruses.
        Nature. 1956; 177: 473-475
        • Caspar D.L.D.
        Movement and self-control in protein assemblies. Quasi-equivalence revisited.
        Biophys J. 1980; 32: 103-133
        • Van Workum K.
        • Douglas J.F.
        Symmetry, equivalence, and molecular self-assembly.
        Phys Rev E Stat Non-lin Soft Matt Phys. 2006; 73: 1-15
        • Holzapfel G.A.
        Collagen in arterial walls: biomechanical aspects.
        in: Fratzl P. Collagen: structure and mechanics. Springer, 2008: 285-324
        • Gabella J.
        The cross-ply arrangement of collagen fibres in the submucosa of the mammalian small intestine.
        Cell Tiss Res. 1987; 248: 491-497
        • Carey E.J.
        Studies in the dynamics of histogenesis I. Tension of differential growth as a stimulus to myogenesis.
        J Gen Physiol. 1920; 2: 357-372
        • Carey E.J.
        Studies in the dynamics of histogenesis II. Tension of differential growth as a stimulus to myogenesis in the esophagus.
        J Gen Physiol. 1920; 3: 61-83
        • Hukins D.W.L.
        • Meakin J.R.
        Relationship between structure and mechanical function of the tissues of the intervertebral joint.
        Am Zool. 2000; 40: 42-52
        • Avery N.C.
        • Bailey A.J.
        Restraining cross-links responsible for the mechanical properties of collagen fibers: natural and artificial.
        in: Fratzl P. Collagen: structure and mechanics. Springer, 2008: 81-110
        • Koob T.J.
        • Long J.H.
        The vertebrate body axis: evolution and mechanical function.
        Am Zool. 2000; 40: 1-18
        • Etnier S.A.
        Twisting and bending of biological beams: distribution of biological beams in a stiffness mechanospace.
        Biol Bull. 2003; 205: 36-46
        • Clark R.B.
        • Cowey J.B.
        Factors controlling the change of shape of certain nemertean and turbellarian worms.
        J Exp Biol. 1958; 35: 731-748
        • Shadwick R.
        Foundations of animal hydraulics: geodesic fibres control the shape of soft bodied animals.
        J Exp Biol. 2008; 211: 289-291
        • Gutsmann T.
        • Fantner G.E.
        • Venturoni M.
        • Ekani-Nkodo A.
        • Thompson J.B.
        • Kindt J.H.
        • et al.
        Evidence that collagen fibrils in tendons are inhomogeneously structured in a tube-like manner.
        Biophys J. 2003; 84: 2593-2598
        • Purslow P.P.
        The extracellular matrix of skeletal and cardiac muscle.
        in: Fratzl P. Collagen: structure and mechanics. Springer, 2008: 325-353
        • Buckberg G.D.
        Basic science review: the helix and the heart.
        J Thorac Cardiovasc Surg. 2002; 124: 863-883
      2. Grosberg A. A bio-inspired computational model of cardiac mechanics: pathology and development. PhD.thesis, California Institute of Technology, Pasadena, California; 2008.–152117/.

        • Maas H.
        • Jaspers R.T.
        • Baan G.C.
        • Huijing P.A.
        Myofascial force transmission between a single muscle head and adjacent tissues: length effects of head III of rat EDL.
        J Appl Physiol. 2003; 95: 2004-2013
        • Huijing P.A.
        • Baan G.C.
        Myofascial force transmission via extramuscular pathways occurs between antagonistic muscles.
        Cells Tiss Org. 2008; 188: 400-414
        • Stecco A.
        • Macchi V.
        • Stecco C.
        • Porzionato A.
        • Day J.A.
        • Delmas V.
        • et al.
        Anatomical study of myofascial continuity in the anterior region of the upper limb.
        J Bodyw Mov Ther. 2009; 13: 53-62
        • Passerieux E.
        • Rossignol R.
        • Letellier T.
        • Delage J.P.
        Physical continuity of the perimysium from myofibers to tendons: involvement in lateral force transmission in skeletal muscle.
        J Struct Biol. 2007; 159: 19-28
        • Kier W.M.
        • Smith K.K.
        Tongues, tentacles and trunks: the biomechanics of movement in muscular-hydrostats.
        Zool J Linn Soc. 1985; 83: 307-324
        • Johnson S.
        • Kier W.M.
        Intramuscular crossed connective tissue fibres: skeletal support in the lateral fins of squid and cuttlefish (Mollusca: Cephalopoda).
        J Zool Lond. 1993; 231: 311-338
        • O’Reilly J.C.
        • Summers A.P.
        • Ritter D.A.
        The evolution of the functional role of trunk muscles during locomotion in adult amphibians.
        Am Zool. 2000; 40: 123-135
        • Hebrank M.R.
        Mechanical properties and locomotor functions of eel skin.
        Biol Bull. 1980; 158: 58-68
        • Pabst D.A.
        To bend a dolphin: convergence of force transmission designs in cetaceans and scombrid fishes.
        Am Zool. 2000; 40: 146-155
        • Stecco L.
        Fascial manipulation for musculoskeletal pain.
        Piccin Nuova Libraria, Padova2004
        • Sergueef N.
        Cranial osteopathy for infants, children and adolescents.
        Churchill Livingstone Elsevier, 2007
        • Fuller B.B.
        Synergetics, explorations in the geometry of thinking.
        Macmillan, 1975
        • Levin S.M.
        The tensegrity truss as a model for spine mechanics: biotensegrity.
        J Mech Med Biol. 2002; 2: 375-388
        • Pickett G.T.
        • Gross M.
        • Okuyama H.
        Spontaneous chirality in simple systems.
        Phys Rev Letts. 2000; 85: 3652-3655
        • Sadoc J.F.
        • Rivier N.
        Boerdijk-Coxeter helix and biological helices as quasicrystals.
        Mat Sci Eng. 2000; 294–6: 397-400
        • Lord E.A.
        Helical structures: the geometry of protein helices and nanotubes.
        Struct Chem. 2002; 13: 305-314
        • Galloway J.
        Helical imperative: paradigm of form and function.
        Encyc Life Sci. Wiley Interscience, 2002 (online)
        • Pauling L.
        • Corey R.B.
        • Branson H.R.
        The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain.
        Proc Nat Acad Sci. 1951; 1951: 205-211
        • Jones L.J.F.
        • Carballido-Lopez R.
        • Errington J.
        Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis.
        Cell. 2001; 104: 913-922
        • Shih Y.
        • Rothfield L.
        The bacterial cytoskeleton.
        Microbiol Mol Biol Rev. 2006; 70: 729-754
        • Lloyd C.
        • Chan J.
        Helical microtubule arrays and spiral growth.
        Plant Cell. 2002; 14: 2319-2324
        • Douady S.
        • Couder Y.
        Phyllotaxis as a physical self-organized growth process.
        Phys Rev Letts. 1992; 68: 2098-2101
        • Atela P.
        • Gole C.
        • Hotton S.
        A dynamical system for plant pattern formation: a rigorous analysis.
        J Nonlinear Sci. 2002; 12: 641-676
        • Gibson C.M.
        • Gibson W.J.
        • Murphy S.A.
        • Marble S.J.
        • McCabe C.H.
        • Turakhia M.P.
        • et al.
        Association of the Fibonacci cascade with the distribution of coronary artery lesions responsible for ST-segment elevation myocardial infarction.
        Am J Cardilo. 2003; 1: 595-597
        • Stewart I.
        Life’s other secret.
        Allen Lane, Penguin, 1998
        • Ingber D.E.
        • Madri J.A.
        • Jamieson J.D.
        Role of basal lamina in neoplastic disorganization of tissue architecture.
        Proc Nat Acad Sci. 1981; 78: 3901-3905
        • Levin S.M.
        Continuous tension, discontinuous compression: a model for biomechanical support of the body.
        Bull Struct Integ. 1982; 8
        • Joshi H.C.
        • Chu D.
        • Buxbaum R.E.
        • Heidemann S.R.
        Tension and compression in the cytoskeleton of PC 12 neurites.
        J Cell Biol. 1985; 101: 697-705
        • Van Essen D.C.
        A tension-based theory of morphogenesis and compact wiring in the central nervous system.
        Nature. 2007; 385: 313-318
        • Du N.
        • Liu X.Y.
        • Narayanan J.
        • Li L.
        • Lim M.L.M.
        • Li D.
        Design of superior spider silk: from nanostructure to mechanical properties.
        Biophys J. 2006; 91: 4528-4535
        • Frantsevich L.
        • Gorb S.
        Arcus as a tensegrity structure in the arolium of wasps (Hymenoptera: Vespidae).
        Zoology. 2002; 105: 225-237
        • Moore K.A.
        • Polte T.
        • Huang S.
        • Shi B.
        • Alsberg E.
        • Sunday M.E.
        • et al.
        Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension.
        Dev Dyn. 2005; 232: 268-281
        • Watson R.R.
        • Fu Z.
        • West J.B.
        Morphometry of the extremely thin pulmonary blood-gas barrier in the chicken lung.
        Am J Physiol – Lung Cell Mol Phys. 2007; 292: L769-L777
        • Weibel E.R.
        How to make an alveolus.
        Eur Resp J. 2008; 31: 483-485
        • Maina J.N.
        Spectacularly robust! Tensegrity principle explains the mechanical strength of the avian lung.
        Resp Physiol Neurobiol. 2007; 155: 1-10
        • Ingber D.E.
        Cellular mechanotransduction: putting all the pieces together again.
        FASEB J. 2006; 20: 811-827
        • Levin S.M.
        Putting the shoulder to the wheel: a new biomechanical model for the shoulder girdle.
        J Biomed Sci Instrum. 1997; 33: 412-417
        • Parker K.K.
        • Ingber D.E.
        Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering.
        Phil Trans Roy Soc B Biol Sci. 2007; 2114: 1-13
        • Levin S.M.
        A suspensory system for the sacrum in pelvic mechanics: biotensegrity.
        in: Vleeming A. Mooney V. Stoeckart R. Movement, stability and lumbopelvic pain. Churchill Livingstone, 2007
        • Scarr G.M.
        A model of the cranial vault as a tensegrity structure, and its significance to normal and abnormal cranial development.
        Int J Osteo Med. 2008; 11: 80-89
        • Connelly R.
        • Back A.
        Mathematics and tensegrity.
        Am Scien. 1998; 86: 142-151
        • Zanotti G.
        • Guerra C.
        Is tensegrity a unifying concept of protein folds?.
        FEBS Lett. 2003; 534: 7-10
        • Sung L.A.
        • Vera C.
        Protofilament and hexagon: a three-dimensional mechanical model for the junctional complex in the erythrocyte membrane skeleton.
        Ann Biomed Eng. 2003; 31: 1314-1326
        • Zhu Q.
        • Vera C.
        • Asaro R.J.
        • Sche P.
        • Sung L.A.
        A hybrid model for erythrocyte membrane: a single unit of protein network coupled with lipid bilayer.
        Biophys J. 2007; 93: 386-400
        • Mazumder A.
        • Shivashankar G.V.
        Emergence of a prestressed eukaryotic nucleus during cellular differentiation and development.
        J Roy Soc Interface. 2010; 7: S321-S330
        • Nelson C.M.
        • Jean R.P.
        • Tan J.L.
        • Liu W.F.
        • Sniadecki N.J.
        • Spector A.A.
        • et al.
        Emergent patterns of growth controlled by multicellular form and mechanics.
        Proc Nat Acad Sci. 2005; 102: 11594-11599
        • Henderson J.H.
        • Carter D.R.
        Mechanical induction in limb morphogenesis: the role of growth-generated strains and pressures.
        Bone. 2002; 31: 645-653
        • Ingber D.E.
        • Folkmann J.
        Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro; role of extracellular matrix.
        J Cell Biol. 1989; 109: 317-330
        • Ingber D.E.
        Control of capillary growth and differentiation by extracellular matrix: use of a tensegrity (tensional integrity) mechanism for signal processing.
        Chest. 1991; 99: 34-40
        • Watermann-Storer C.M.
        • Salmon W.C.
        • Salmon E.D.
        Feedback interactions between cell-cell adherens junctions and cytoskeletal dynamics in newt lung epithelial cells.
        Mol Biol Cell. 2000; 11: 2471-2483
        • Dejana E.
        • Corada M.
        • Lampugnani M.G.
        Endothelial cell-to-cell junctions.
        FASEB J. 1995; 9: 910-918
        • De Catarina R.
        • Massora M.
        • Libby P.
        Endothelial functions and dysfunctions.
        in: De Caterina R. Libby P. Endothelial dysfunctions in vascular disease. Wiley-Blackwell, 2007
        • Jimenez-hamann M.C.
        • Sacks M.S.
        • Malinin T.I.
        Quantification of the collagen fibre architecture of human cranial dura mater.
        J Anat. 1998; 192: 99-106
        • Angelsky O.V.
        • Tomka Y.Y.
        • Ushenko A.G.
        • Ushenko Y.G.
        • Ushenko Y.A.
        Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states.
        J Phys D Appl Phys. 2005; 38: 4227-4235
        • Williams R.M.
        • Zipfel W.R.
        • Webb W.W.
        Interpreting second-harmonic generation images of collagen I fibrils.
        Biophys J. 2005; 88: 1377-1386
        • Ker R.F.
        Damage and fatigue.
        in: Fratzl P. Collagen: structure and mechanics. Springer, 2008: 111-132
        • Verheyen H.F.
        The complete set of jitterbug transformers and the analysis of their motion.
        Comp Maths Appl. 1989; 17: 203-250